

Sharing Clinical Study Report Synopsis

This synopsis is part of the full Clinical Study Report (CSR), which is property of Chiesi Farmaceutici S.p.A.

Chiesi Farmaceutici S.p.A. makes the CSR Synopsis available, consistently with the need to protect the patient privacy, publication rights, and commercially confidential information, through appropriate redaction.

The CSR synopsis is supplied for information only, with the purpose of disclosing scientific data. Hence, it cannot be used, in parts or its entirety, for commercial purposes, nor distributed, published, reused or used for any other purpose without the express written permission of Chiesi Farmaceutici S.p.A.

Results reported in the CSR synopsis are related to a specific study and may not reflect the overall evidence obtained across the product development. Therefore, it is not aimed at providing an exhaustive analysis of all the data currently available on a particular drug. You can learn more about Chiesi Farmaceutici S.p.A. medicinal product consulting the approved product labelling, which may vary from country to country.

The CSR synopsis is not intended to promote any product or indication and is not intended to replace the advice of a health care professional.

SYNOPSIS

Name of Company:IndividualChiesi Farmaceutici S.p.A.Referringof the Do			(for National Authority Use only)
Name of Finished Product: CHF 5259 pMDI, Atimos [®] pMDI	Volume:		
Name of Active Ingredient: glycopyrrolate, formoterol	Page:		
study to in	nvestigate t		po-controlled, 4-way cross-over teraction of glycopyrrolate and
Investigators:	MD		
Study Centre(s):			Belgium
Publication (reference): None			
Studied Period:		Phase of developme	nt: Phase I
20 May 2011 (first patient 05 August 2011 (last patient las			
Objectives:			
Primary:			
To evaluate the pharmacokinetic interaction between glycopyrrolate and formoterol by comparing the systemic exposure after a single dose of the free combination of CHF 5259 and Atimos [®] to that of the single components, with all treatments administered using a pressurised metered dose inhaler (pMDI).			
Secondary:			
To assess the safety and toler pMDI in comparison to that of t			CHF 5259 pMDI and Atimos [®]
Methodology (Study Design):			
test treatment (Treatment T) co CHF 5259 pMDI and 24 μ g (2) single dose administration of 1 Treatment R1) and a single c	nsisted of a puffs of 12 00 µg (4 pu lose admini ent R2). Plac	single dose administrat µg) Atimos [®] pMDI. Re uffs of 25 µg) CHF 525 distration of 24 µg (2 p cebo (Treatment P) con	se, 4-way cross-over study. The tion of 100 μ g (4 puffs of 25 μ g) ference treatments consisted of a 59 pMDI (reference treatment 1, puffs of 12 μ g) Atimos [®] pMDI usisted of 1 inhalation of placebo ut period.
Number of patients (planned of	and analyse	<i>d</i>):	
In order to obtain 40 evaluable	e subjects, 4	44 healthy subjects (at	least 16 males and 16 females)

In order to obtain 40 evaluable subjects, 44 healthy subjects (at least 16 males and 16 females) were planned to be included. In total 107 subjects were screened, 44 subjects were randomised, and 42 subjects completed the study.

Name of Company:	Individual Study Table	(for National Authority Use
Chiesi Farmaceutici S.p.A.	Referring to Part of the Dossier	only)
Name of Finished Product:	of the Dossier	
CHF 5259 pMDI, Atimos [®] pMDI	Volume:	
Name of Active Ingredient:		
glycopyrrolate, formoterol	Page:	
Diagnosis and main criteria for	r inclusion:	
	ts aged 18-65 years (inclusive), wi at screening and on Day 1 pre-dose	0
Test product, dose and mode o	f administration, batch number:	
Treatment T (test):		
	pMDI 25 µg/actuation and 2 tal dose of 100 µg glycopyrrolate a	
(CHF 5259 pMDI batch no. expiry date)	recheck date	; Atimos [®] pMDI batch no.
Duration of treatment:		
Four single-dose treatment perio	ds separated by a 7- to 10-day was	h-out period.
Reference therapy, dose and m	node of administration, batch nur	mber:
Treatment R1 (reference treatme	ent 1):	
4 inhalations of CHF 5259 p glycopyrrolate (batch no.	MDI 25 µg/actuation, resulting recheck date	in a total dose of 100 µg
Treatment R2 (reference treatme	ent 2):	
2 inhalations of Atimos [®] pMDI (batch no. expiry date	12 μg/actuation, resulting in a total	dose of 24 μ g of formoterol
Treatment P (placebo):		
1 inhalation of placebo pMDI (b	atch no. recheck date)

Name of Company: Chiesi Farmaceutici S.p.A. Name of Finished Product:	Individual Study Table Referring to Part of the Dossier	(for National Authority Use only)
CHF 5259 pMDI, Atimos [®] pMDI	Volume:	
Name of Active Ingredient: glycopyrrolate, formoterol	Page:	

Criteria for evaluation:

Pharmacokinetics:

Primary variables

• Plasma glycopyrrolate and formoterol: area under the plasma concentration curve (AUC_{0-t}) and maximum plasma concentration (C_{max})

Secondary variables

- Plasma glycopyrrolate AUC_{0-30min}, AUC_{0-32h}, AUC_{0- ∞}, time to maximum plasma concentration (t_{max}), and terminal half-life (t_{1/2})
- Plasma formoterol AUC $_{0\text{-}30\text{min}}$, AUC $_{0\text{-}24\text{h}}$, AUC $_{0\text{-}\infty}$, t_{max} , and $t_{^{1}\!/_{2}}$

Exploratory variables

• Urine glycopyrrolate: cumulative urinary excretion (Ae_{0-4h}, Ae_{4-32h}, Ae_{0-32h}), fraction excreted unchanged (fe), and renal clearance (CLr)

Safety

- Adverse events (AEs) and adverse drug reactions (ADRs), including occurrence of paradoxical bronchospasm
- Serum potassium: value of and time to minimum plasma concentration and time (C_{min} and t_{min}) and AUC_{0-24h}
- Plasma glucose: C_{max} , t_{max} , and AUC_{0-24h}
- Lung function test: forced expiratory volume in 1 second (FEV₁)
- Laboratory tests: clinical chemistry, haematology and urinalysis
- Vital sign parameters: heart rate (HR), systolic blood pressure (SBP), and diastolic blood pressure (DBP).
- 12-lead ECG parameters: HR, intervals RR, PR, QRS and QT, and QT interval corrected for HR according to Bazett and Fridericia (QTcB and QTcF, respectively)

Name of Company: Chiesi Farmaceutici S.p.A. Name of Finished Product:	Individual Study Table Referring to Part of the Dossier	(for National Authority Use only)
CHF 5259 pMDI, Atimos [®] pMDI	Volume:	
Name of Active Ingredient: glycopyrrolate, formoterol	Page:	

Statistical methods:

Pharmacokinetic variables

- Plasma glycopyrrolate and formoterol AUC_{0-t}, AUC_{0-30min}, AUC_{0-24h} (for formoterol), AUC_{0-32h} (for glycopyrrolate), AUC_{0-∞}, C_{max}, and t_{1/2} were log-transformed and analysed using a linear model including treatment, sequence, period and subject within sequence as fixed effects. The ratios of adjusted geometric means between treatments T and R1 (for glycopyrrolate parameters) and treatments T and R2 (for formoterol parameters) were calculated with their 90% two-sided confidence intervals (CIs).
- Absence of interaction between glycopyrrolate and formoterol was concluded if the 90% CIs of the ratios of adjusted geometric means for glycopyrrolate and formoterol AUC_{0-t} and C_{max} were contained within the acceptance interval 80%-125%.
- For t_{max}, the Hodges-Lehmann nonparametric estimate of location shift between treatments T and R1 (for glycopyrrolate) and treatments T and R2 (for formoterol) based on untransformed data was provided with its 90% two-sided CI.
- For exploratory purposes, urine glycopyrrolate Ae_{0-4h}, Ae_{4-32h}, Ae_{0-32h}, fe, and CLr were summarised by treatment using descriptive statistics.

Safety variables

- The number and percentage of subjects experiencing AEs, ADRs, serious adverse events (SAEs), and AEs leading to study withdrawal were presented by treatment. AEs were summarised by System Organ Class (SOC) and Preferred Term using the Medical Dictionary for Regulatory Activities (MedDRA) dictionary, including specific tables by AE intensity and drug causality.
- Serum potassium C_{min} and AUC_{0-24h} , plasma glucose C_{max} and AUC_{0-24h} were log-transformed and analysed using a linear model including treatment, sequence, period and subject within sequence as fixed effects. The ratios of adjusted geometric means between treatments T and P, R2 and P, and T and R2 were calculated with their 95% two-sided CIs.
- For serum potassium t_{min} and plasma glucose t_{max} , the Hodges-Lehmann nonparametric estimate of location shift between treatments T and P, R2 and P, and T and R2 based on untransformed data were provided with its 95% two-sided CI.
- For laboratory tests, a shift table of follow-up versus screening was presented.

Name of Company: Chiesi Farmaceutici S.p.A. Name of Finished Product:	Individual Study Table Referring to Part of the Dossier	(for National Authority Use only)
CHF 5259 pMDI, Atimos [®] pMDI	Volume:	
Name of Active Ingredient:		
glycopyrrolate, formoterol	Page:	

Statistical methods, cont'd:

- Mean changes from pre-dose to each time point post-dose in FEV₁ were calculated with their 95% CIs by treatment.
- At each time point post-dose the following statistics were calculated by treatment for vital sign and ECG parameters:
 - mean absolute value with its 95% CI
 - o mean change from pre-dose (pre-dose-adjusted value) with its 90% CI
 - mean difference versus placebo in change from pre-dose (pre-dose- and placebo-adjusted value) with its 90% CI
 - $\circ\,$ mean differences between treatments T and R1 and T and R2 in change from pre-dose with their 90% CIs

Time profile plots, both individual and by treatment, were presented for pre-dose- and placebo-adjusted value.

- For both QTcB and QTcF, the number and percentage of subjects with the following at each time point post-dose and at any time point post-dose were presented by treatment:
 - QTc interval >450 ms, >480 ms and >500 ms
 - \circ change from pre-dose in QTc interval >30 ms and >60 ms

Summary – Conclusions:

Pharmacokinetic Results:

Glycopyrrolate pharmacokinetic results

The pharmacokinetics of glycopyrrolate were studied in plasma and urine up to 32 h after administration of 2 active treatments (Treatments T and R1). Pre-dose plasma concentrations were always below the lower limit of quantification (BLOQ).

The main glycopyrrolate plasma pharmacokinetic parameters and the statistical analysis are shown in the tables below.

Name of Company: Chiesi Farmaceutici S.p.A. Name of Finished Product:	Individual Study Table Referring to Part of the Dossier	(for National Authority Use only)	
CHF 5259 pMDI, Atimos [®] pMDI	Volume:		
Name of Active Ingredient:	Page:		
glycopyrrolate, formoterol			
Pharmacokinetic Results, cor	nt'd:		
Pharmacokinetic parameter	СН F 5259 pMDI 100 µg + Atimos [®] pMDI 24 µg (T) N = 41	CHF 5259 pMDI 100 μg (R1) N = 41	
C _{max} (pg/mL)	77.8 ± 50.3	62.6 ± 36.2	
t _{max} (h)	0.08 (0.08-1.50)	0.08 (0.08-1.00)	
AUC _{0-30min} (pg.h/mL)	24.3 ± 13.6	23.4 ± 13.3	
AUC _{0-32h} (pg.h/mL)	167 ± 96.2	172 ± 101	
AUC _{0-t} (pg.h/mL)	155 ± 92.7	159 ± 98.2	
$AUC_{0-\infty}$ (pg.h/mL)	148 ± 32.7^{a}	134 ± 34.9^{b}	
$t_{1/2}$ (h) N = number of subjects	4.56 ± 6.60 °	$4.89 \pm 7.35^{\rm d}$	

N = number of subjects

Values are arithmetic means \pm tandard deviation (SD), except median (range) for t_{max}

^a N = 10, ^b N = 13, ^c N = 24, ^d N = 25

Glycopyrrolate C_{max} was slightly higher following administration of CHF 5259 pMDI + Atimos[®] pMDI (Treatment T) than following administration of CHF 5259 pMDI alone (Treatment R1), with a point estimate of the ratio of geometric means T/R1 at 118% (90% CI 105;134). The extent of glycopyrrolate absorption was similar with or without the concomitant administration of Atimos[®] pMDI, indicated by point estimates T/R1 of 104% (90% CI 94;115) for AUC_{0-30min}, 99% (90% CI 88;111) for AUC_{0-32h}, and 99% (90% CI 87;111) for AUC_{0-t}. The terminal elimination half-life was also similar, indicated by the point estimate T/R1 of 111% (90% CI 99;126). The absorption rate of glycopyrrolate was not impacted by the concomitant administration of Atimos[®] pMDI, as indicated by the point estimate of 0.00 and p-value of 1 for t_{max}. Not enough data were available to perform the statistical analysis on AUC_{0∞}.

Name of Company: Chiesi Farmaceutici S.p.A. Name of Finished Product:		Individual Study Table Referring to Part of the Dossier	(for National Authority Use only)
		of the Dossier	
CHF 5259 pMD Atimos [®] pMDI	DI,	Volume:	
Name of Active	e Ingredient:		
glycopyrrolate, formoterol		Page:	
Pharmacokine	tic Results, co	nt'd	
Statistical analy	sis of glycopy	rrolate plasma pharmacokinetic	
			MDI 100 μg +
Pharmacokinetic			sus CHF 5259 pMDI 100 µg sus R1)
parameter		p-value ^a	Ratio PE (90% CI) ^b
C _{max}		0.0244	118.46 (104.88;133.80)
t _{max}		1.0000	0.00 (0.00;0.00)
AUC _{0-30min}		0.5343	103.88 (93.78;115.06)
AUC _{0-32h}		0.8509	98.70 (87.84;110.91)
AUC _{0-t}		0.8455	98.61 (87.44;111.21)
$AUC_{0-\infty}$		NA ^c	NA ^c
t _{1/2}		0.1324	111.43 (98.88;125.57)
^b Point estimate an assessed between ^c location shift between	difference betwee ad 90% CI of the T and R1 using een T and R1 base	en treatments (ANOVA, non-parametric least-squares geometric percentage a Wilcoxon signed rank test; the He ed on untransformed data was provide	ratio (ANOVA). For t _{max} , comparison was odges-Lehmann nonparametric estimate of
^a Probability of no o ^b Point estimate an assessed between ^b location shift between ^c Number of subject The excretion	difference betwee ad 90% CI of the T and R1 using een T and R1 base ts with data avail of glycopyrrol	In treatments (ANOVA, non-parameter least-squares geometric percentage a Wilcoxon signed rank test; the He ed on untransformed data was provide able for both T and $R1 = 4$ late in urine was studied up	 to 32 h post-dose. The summary
^a Probability of no o ^b Point estimate an assessed between ^b location shift between ^c Number of subject The excretion	difference betwee ad 90% CI of the T and R1 using een T and R1 base ts with data avail of glycopyrrol	In treatments (ANOVA, non-parameter least-squares geometric percentage a Wilcoxon signed rank test; the He ed on untransformed data was provide able for both T and $R1 = 4$ late in urine was studied up on parameters is reported in the	ratio (ANOVA). For t _{max} , comparison was odges-Lehmann nonparametric estimate of ed with its 90% two-sided CI. to 32 h post-dose. The summary e table below:
^a Probability of no o ^b Point estimate an assessed between ^b location shift between ^c Number of subject The excretion	difference betwee ad 90% CI of the T and R1 using een T and R1 base ets with data avail of glycopyrrol urinary excretion	In treatments (ANOVA, non-parameter least-squares geometric percentage a Wilcoxon signed rank test; the He ed on untransformed data was provide able for both T and $R1 = 4$ late in urine was studied up	 to 32 h post-dose. The summary
^a Probability of no o ^b Point estimate an assessed between ^d location shift betwo ^c Number of subject The excretion glycopyrrolate u	difference betwee ad 90% CI of the T and R1 using een T and R1 base ets with data avail of glycopyrrol urinary excretion	en treatments (ANOVA, non-parameter least-squares geometric percentage a Wilcoxon signed rank test; the He ed on untransformed data was provide able for both T and $R1 = 4$ late in urine was studied up on parameters is reported in the CHF 5259 pMDI 100 µg +	ratio (ANOVA). For t _{max} , comparison was odges-Lehmann nonparametric estimate of ed with its 90% two-sided CI. to 32 h post-dose. The summary e table below:
^a Probability of no o ^b Point estimate an assessed between ^b location shift betwo ^c Number of subject The excretion glycopyrrolate u	difference betwee ad 90% CI of the T and R1 using een T and R1 base ets with data avail of glycopyrrol urinary excretion	en treatments (ANOVA, non-parameter least-squares geometric percentage a Wilcoxon signed rank test; the He ed on untransformed data was provide able for both T and R1 = 4 late in urine was studied up on parameters is reported in the CHF 5259 pMDI 100 μ g + Atimos [®] pMDI 24 μ g (T)	ratio (ANOVA). For t _{max} , comparison was odges-Lehmann nonparametric estimate o ed with its 90% two-sided CI. to 32 h post-dose. The summary table below: CHF 5259 pMDI 100 µg (R1)
^a Probability of no o ^b Point estimate an assessed between ^c location shift betwe ^c Number of subject The excretion glycopyrrolate the Pharmacokinetic	difference betwee ad 90% CI of the T and R1 using een T and R1 base ets with data avail of glycopyrrol urinary excretion	en treatments (ANOVA, non-parameter least-squares geometric percentage a Wilcoxon signed rank test; the He ed on untransformed data was provide able for both T and R1 = 4 late in urine was studied up on parameters is reported in the CHF 5259 pMDI 100 µg + Atimos [®] pMDI 24 µg (T) N = 39	ratio (ANOVA). For t _{max} , comparison was odges-Lehmann nonparametric estimate o ed with its 90% two-sided CI. to 32 h post-dose. The summary table below: CHF 5259 pMDI 100 µg (R1) N = 36
^a Probability of no of ^b Point estimate an assessed between f location shift betwe ^c Number of subject The excretion glycopyrrolate the Pharmacokinetic Ae _{0-32h} (μg)	difference betwee ad 90% CI of the T and R1 using een T and R1 base ets with data avail of glycopyrrol urinary excretion	en treatments (ANOVA, non-parameter least-squares geometric percentage a Wilcoxon signed rank test; the He ed on untransformed data was provide able for both T and R1 = 4 late in urine was studied up on parameters is reported in the CHF 5259 pMDI 100 μ g + Atimos [®] pMDI 24 μ g (T) N = 39 5.45 ± 2.45	ratio (ANOVA). For t_{max} , comparison was obdges-Lehmann nonparametric estimate of ed with its 90% two-sided CI. to 32 h post-dose. The summary table below: CHF 5259 pMDI 100 µg (R1) N = 36 5.72 ± 2.34
^a Probability of no of ^b Point estimate an assessed between ^b location shift betwo ^c Number of subject The excretion of glycopyrrolate u Pharmacokinetic Ae _{0-32h} (μg) Ae _{0-4h} (μg)	difference betwee ad 90% CI of the T and R1 using een T and R1 base ets with data avail of glycopyrrol urinary excretion	en treatments (ANOVA, non-parameter least-squares geometric percentage a Wilcoxon signed rank test; the He ed on untransformed data was provide able for both T and R1 = 4 late in urine was studied up on parameters is reported in the CHF 5259 pMDI 100 μ g + Atimos [®] pMDI 24 μ g (T) N = 39 5.45 ± 2.45 2.48 ± 1.12	ratio (ANOVA). For t_{max} , comparison was obdges-Lehmann nonparametric estimate of ed with its 90% two-sided CI. to 32 h post-dose. The summary table below: CHF 5259 pMDI 100 µg (R1) N = 36 5.72 ± 2.34 2.81 ± 1.15
^a Probability of no of ^b Point estimate an assessed between ^c location shift betwo ^c Number of subject The excretion of glycopyrrolate t Pharmacokinetic Ae _{0-32h} (μg) Ae _{0-4h} (μg) Ae _{4-32h} (μg)	difference betwee ad 90% CI of the T and R1 using een T and R1 base ets with data avail of glycopyrrol urinary excretion	en treatments (ANOVA, non-parameter least-squares geometric percentage a Wilcoxon signed rank test; the He ed on untransformed data was provide able for both T and R1 = 4 late in urine was studied up on parameters is reported in the CHF 5259 pMDI 100 μ g + Atimos [®] pMDI 24 μ g (T) N = 39 5.45 ± 2.45 2.48 ± 1.12 2.96 ± 1.47	ratio (ANOVA). For t_{max} , comparison was obdges-Lehmann nonparametric estimate of ed with its 90% two-sided CI. to 32 h post-dose. The summary table below: CHF 5259 pMDI 100 µg (R1) N = 36 5.72 ± 2.34 2.81 ± 1.15 2.92 ± 1.34
^a Probability of no e^{b} Point estimate an assessed between e^{b} location shift betw	difference betwee ad 90% CI of the T and R1 using een T and R1 base ets with data avail of glycopyrrol arinary excretion c parameter	en treatments (ANOVA, non-parameter least-squares geometric percentage a Wilcoxon signed rank test; the He ed on untransformed data was provide able for both T and R1 = 4 late in urine was studied up on parameters is reported in the CHF 5259 pMDI 100 μ g + Atimos [®] pMDI 24 μ g (T) N = 39 5.45 ± 2.45 2.48 ± 1.12 2.96 ± 1.47 5.45 ± 2.45	ratio (ANOVA). For t_{max} , comparison was obdges-Lehmann nonparametric estimate of ed with its 90% two-sided CI. to 32 h post-dose. The summary table below: CHF 5259 pMDI 100 µg (R1) $N = 36$ 5.72 ± 2.34 2.81 ± 1.15 2.92 ± 1.34 5.72 ± 2.34
^a Probability of no e^{b} Point estimate an assessed between e^{b} location shift betw	difference betwee d 90% CI of the T and R1 using een T and R1 base ets with data avail of glycopyrrol urinary excretion c parameter jects tic means ± SD	en treatments (ANOVA, non-parameter least-squares geometric percentage a Wilcoxon signed rank test; the He ed on untransformed data was provide able for both T and R1 = 4 late in urine was studied up on parameters is reported in the CHF 5259 pMDI 100 μ g + Atimos [®] pMDI 24 μ g (T) N = 39 5.45 ± 2.45 2.48 ± 1.12 2.96 ± 1.47 5.45 ± 2.45 639 ± 218	ratio (ANOVA). For t_{max} , comparison was obdges-Lehmann nonparametric estimate of ed with its 90% two-sided CI. to 32 h post-dose. The summary table below: CHF 5259 pMDI 100 µg (R1) N = 36 5.72 ± 2.34 2.81 ± 1.15 2.92 ± 1.34 5.72 ± 2.34 637 ± 246
^a Probability of no e^{b} Point estimate an assessed between f^{b} location shift between f^{c} Number of subject The excretion e^{c} glycopyrrolate under the excretion f^{c} and f^{c} as the excretion f^{c} and f^{c	difference betwee d 90% CI of the T and R1 using een T and R1 base ets with data avail of glycopyrrol urinary excretion c parameter jects tic means ± SD yrrolate excret	en treatments (ANOVA, non-parameter least-squares geometric percentage a Wilcoxon signed rank test; the He ed on untransformed data was provide able for both T and R1 = 4 late in urine was studied up on parameters is reported in the CHF 5259 pMDI 100 μ g + Atimos [®] pMDI 24 μ g (T) N = 39 5.45 ± 2.45 2.48 ± 1.12 2.96 ± 1.47 5.45 ± 2.45 639 ± 218 tion profile over 32 h post dow	ratio (ANOVA). For t_{max} , comparison was obdges-Lehmann nonparametric estimate of ed with its 90% two-sided CI. to 32 h post-dose. The summary table below: CHF 5259 pMDI 100 µg (R1) N = 36 5.72 ± 2.34 2.81 ± 1.15 2.92 ± 1.34 5.72 ± 2.34 637 ± 246 Se was, on average, similar followi
^a Probability of no e^{b} Point estimate an assessed between f^{a} location shift between f^{b} Number of subject. The excretion e^{b} glycopyrrolate the excretion f^{b} Pharmacokinetic Pharmacokinetic A e_{0-32h} (µg) Ae_{0-32h} (µg) Ae_{0-4h} (µg) Ae_{4-32h} (µg) fe (% dose) CLr (mL/min) N = number of subject Values are arithmeted Urinary glycopy	difference betwee ad 90% CI of the T and R1 using een T and R1 base ets with data avail of glycopyrrol urinary excretion c parameter jects tic means ± SD yrrolate excret of CHF 5259 p	en treatments (ANOVA, non-parameter least-squares geometric percentage a Wilcoxon signed rank test; the He ed on untransformed data was provide able for both T and R1 = 4 late in urine was studied up on parameters is reported in the CHF 5259 pMDI 100 µg + Atimos [®] pMDI 24 µg (T) N = 39 5.45 ± 2.45 2.48 ± 1.12 2.96 ± 1.47 5.45 ± 2.45 639 ± 218 cion profile over 32 h post doe oMDI with or without Atimos [®]	ratio (ANOVA). For t_{max} , comparison was obdges-Lehmann nonparametric estimate of ed with its 90% two-sided CI. to 32 h post-dose. The summary table below: CHF 5259 pMDI 100 µg (R1) N = 36 5.72 ± 2.34 2.81 ± 1.15 2.92 ± 1.34 5.72 ± 2.34 637 ± 246
^a Probability of no e^{b} Point estimate an assessed between e^{b} location shift betw	difference betwee d 90% CI of the T and R1 using een T and R1 base ets with data avail of glycopyrrol urinary excretion c parameter jects tic means ± SD yrrolate excret of CHF 5259 p after Treatmen	en treatments (ANOVA, non-parameter least-squares geometric percentage a Wilcoxon signed rank test; the He ed on untransformed data was provide able for both T and R1 = 4 late in urine was studied up on parameters is reported in the CHF 5259 pMDI 100 μ g + Atimos [®] pMDI 24 μ g (T) N = 39 5.45 ± 2.45 2.48 ± 1.12 2.96 ± 1.47 5.45 ± 2.45 639 ± 218 cion profile over 32 h post doe pMDI with or without Atimos [®] t T, Ae _{0-32h} 5.72 ± 2.34 μ g and	ratio (ANOVA). For t_{max} , comparison was obdges-Lehmann nonparametric estimate of ed with its 90% two-sided CI. to 32 h post-dose. The summary table below: CHF 5259 pMDI 100 µg (R1) N = 36 5.72 ± 2.34 2.81 ± 1.15 2.92 ± 1.34 5.72 ± 2.34 637 ± 246 Se was, on average, similar following pMDI (Ae _{0-32h} 5.45 ± 2.45 µg and fe 5.72 ± 2.34% after Treatment R
^a Probability of no e^{b} Point estimate an assessed between e^{b} location shift betwee e^{c} Number of subject The excretion e^{c} glycopyrrolate e^{c} Pharmacokinetic Pharmacokinetic $e^{Ae_{0-32h}}(\mu g)$ Ae _{0-32h} (μg) Ae _{0-32h} (μg) Ae _{0-4h} (μg) Ae _{4-32h} (μg) fe (% dose) CLr (mL/min) N = number of subject Values are arithmet Urinary glycop administration of 5.45 ± 2.45 % a About 50% of	difference betwee d 90% CI of the T and R1 using een T and R1 base een T and R1 base of glycopyrrol arinary excretion c parameter jects tic means ± SD yrrolate excret of CHF 5259 p after Treatment E the amount	en treatments (ANOVA, non-parameter least-squares geometric percentage a Wilcoxon signed rank test; the He ed on untransformed data was provide able for both T and R1 = 4 late in urine was studied up on parameters is reported in the CHF 5259 pMDI 100 μ g + Atimos [®] pMDI 24 μ g (T) N = 39 5.45 ± 2.45 2.48 ± 1.12 2.96 ± 1.47 5.45 ± 2.45 639 ± 218 comprofile over 32 h post doe oMDI with or without Atimos [®] t T, Ae _{0-32h} 5.72 ± 2.34 μ g and excreted was found in the	ratio (ANOVA). For t_{max} , comparison was obdges-Lehmann nonparametric estimate of ed with its 90% two-sided CI. to 32 h post-dose. The summary table below: CHF 5259 pMDI 100 µg (R1) N = 36 5.72 ± 2.34 2.81 ± 1.15 2.92 ± 1.34 5.72 ± 2.34 637 ± 246 se was, on average, similar followi pMDI (Ae _{0-32h} 5.45 ± 2.45 µg and fe 5.72 ± 2.34% after Treatment R 0-4 h post dosing interval (Ae ₀
^a Probability of no e^{b} Point estimate an assessed between e^{c} location shift between e^{c} Number of subject. The excretion e^{c} Number of subject. The excretion e^{c} Pharmacokinetic Pharmacokinetic Ae _{0-32h} (µg) Ae _{0-4h} (µg) Ae _{4-32h} (µg) fe (% dose) CLr (mL/min) N = number of subject. Values are arithmeter Urinary glycop administration of 5.45 ± 2.45 % a About 50% of 2.48 ± 1.12 µg a	difference betwee ad 90% CI of the T and R1 using een T and R1 base ets with data avail of glycopyrrol urinary excretion c parameter c parameter jects tic means ± SD yrrolate excret of CHF 5259 p after Treatment and 2.81 ± 1.15	en treatments (ANOVA, non-parameter least-squares geometric percentage a Wilcoxon signed rank test; the He ed on untransformed data was provide able for both T and R1 = 4 late in urine was studied up on parameters is reported in the CHF 5259 pMDI 100 μ g + Atimos [®] pMDI 24 μ g (T) N = 39 5.45 ± 2.45 2.48 ± 1.12 2.96 ± 1.47 5.45 ± 2.45 639 ± 218 cion profile over 32 h post doe pMDI with or without Atimos [®] t T, Ae _{0-32h} 5.72 ± 2.34 μ g and excreted was found in the 5 μ g after Treatments T and R1	ratio (ANOVA). For t_{max} , comparison was obdges-Lehmann nonparametric estimate of ed with its 90% two-sided CI. to 32 h post-dose. The summary table below: CHF 5259 pMDI 100 µg (R1) N = 36 5.72 ± 2.34 2.81 ± 1.15 2.92 ± 1.34 5.72 ± 2.34 637 ± 246 se was, on average, similar followin pMDI (Ae _{0-32h} 5.45 ± 2.45 µg and fe 5.72 ± 2.34% after Treatment R 0-4 h post dosing interval (Ae ₀ , respectively). The mean (± SD) reported the set of the se
^a Probability of no e^{b} Point estimate an assessed between e^{b} location shift between e^{b} location location shift between e^{b} location locatio	difference betwee d 90% CI of the T and R1 using een T and R1 base ets with data avail of glycopyrrol urinary excretion c parameter c parameter jects tic means ± SD yrrolate excret of CHF 5259 p after Treatment the amount and 2.81 ± 1.15 glycopyrrolate	en treatments (ANOVA, non-parameter least-squares geometric percentage a Wilcoxon signed rank test; the He ed on untransformed data was provide able for both T and R1 = 4 late in urine was studied up on parameters is reported in the CHF 5259 pMDI 100 μ g + Atimos [®] pMDI 24 μ g (T) N = 39 5.45 ± 2.45 2.48 ± 1.12 2.96 ± 1.47 5.45 ± 2.45 639 ± 218 cion profile over 32 h post doe pMDI with or without Atimos [®] t T, Ae _{0-32h} 5.72 ± 2.34 μ g and excreted was found in the 5 μ g after Treatments T and R1	ratio (ANOVA). For t_{max} , comparison was obdges-Lehmann nonparametric estimate of ed with its 90% two-sided CI. to 32 h post-dose. The summary table below: CHF 5259 pMDI 100 µg (R1) N = 36 5.72 ± 2.34 2.81 ± 1.15 2.92 ± 1.34 5.72 ± 2.34 637 ± 246 Se was, on average, similar followi

Name of Company: Chiesi Farmaceutici S.p.A. Name of Finished Product:	Individual Study Table Referring to Part of the Dossier	(for National Authority Use only)
CHF 5259 pMDI, Atimos [®] pMDI	Volume:	
Name of Active Ingredient:	D	
glycopyrrolate, formoterol	Page:	

Pharmacokinetic Results, cont'd:

Formoterol pharmacokinetic results

The pharmacokinetics of formoterol (Atimos®) were studied in plasma up to 24 h after administration of 2 active treatments (Treatments T and R2). Pre-dose plasma concentrations were always below the BLOQ.

The main formoterol pharmacokinetic parameters and the statistical analysis are shown in the tables below:

Pharmacokinetic parameter	СН F 5259 pMDI 100 µg + Atimos [®] pMDI 24 µg (T)	Atimos [®] pMDI 24 µg (R2)
	N = 40	N = 41
C _{max} (pg/mL)	23.2 ± 11.3	25.4 ± 11.8
t _{max} (h)	0.17 (0.08-1.50)	0.08 (0.08-4.00)
AUC _{0-30min} (pg.h/mL)	7.23 ± 3.24	7.61 ± 3.56
AUC_{0-24h} (pg.h/mL)	74.1 ± 27.4	75.2 ± 26.8 ^a
AUC_{0-t} (pg.h/mL)	64.0 ± 23.7	65.4 ± 23.4
$AUC_{0-\infty}$ (\Box g.h/mL)	92.1 ± 16.2 ^b	98.1 ± 24.8 ^c
$t_{1/2}$ (h)	$4.65 \pm 1.70^{\text{ d}}$	4.52 ± 1.56^{e}

N = number of subjects

Values are arithmetic means \pm SD, except median (range) for t_{max} a N = 40, b N = 14, c N = 17, d N = 32, e N =35

The extent of formoterol absorption and systemic exposure were similar following administration of CHF 5259 pMDI + Atimos[®] pMDI (Treatment T) or Atimos[®] pMDI alone (Treatment R2), indicated by point estimates T/R2 of 91% (90% CI 80;102) for Cmax, 99% (90% CI 85;115) for AUC_{0-30min}, 100% (90% CI 89;112) for AUC_{0-24h}, 97% (90% CI 86;110) for AUC_{0-t}, and 98% (90% CI 85;114) for AUC_{0- ∞}. The terminal elimination half-life was also similar, indicated by the point estimate T/R2 of 105% (90% CI 96;117). The time to peak plasma of formoterol was slightly decreased when Atimos[®] pMDI was administered together with CHF 5259 pMDI (Treatment T) compared to Atimos[®] pMDI administered alone (Treatment R2), as indicated by the point estimate T/R2 of 0.04 and p-value of 0.0096 for t_{max}. This slight increase may be explained by the fact that the administration of Atimos[®] pMDI was delayed when administered in combination with CHF 5259 pMDI (order of study drug administration in Treatment T was CHF 5259 pMDI, 4 inhalations and then Atimos[®] pMDI, 2 inhalations); however, this does not have any clinical relevance.

Name of Company: Chiesi Farmaceutici S.p.A.	Individual Study Table Referring to Part	(for National Authority Use only)
Name of Finished Product:	— of the Dossier	
CHF 5259 pMDI, Atimos [®] pMDI	Volume:	
Name of Active Ingredient:		
glycopyrrolate, formoterol	Page:	
8-7-0-2-10-10-0-10-10-10-10-10-10-10-10-10-10-1		
	nt'd:	
Pharmacokinetic Results, co	n t'd: ol plasma pharmacokinetic paran	neters:
Pharmacokinetic Results, co	ol plasma pharmacokinetic paran CHF	5259 pMDI 100 μg + 4 μg versus Atimos [®] pMDI 24 μg
Pharmacokinetic Results, con Statistical analysis of formoter	ol plasma pharmacokinetic paran CHF	5259 pMDI 100 μg + 4 μg versus Atimos [®] pMDI 24 μg (T versus R2)
Pharmacokinetic Results, con Statistical analysis of formoter	ol plasma pharmacokinetic paran CHF Atimos [®] pMDI 24	5259 pMDI 100 μg + 4 μg versus Atimos [®] pMDI 24 μg
Pharmacokinetic Results, con Statistical analysis of formoter Pharmacokinetic parameter	ol plasma pharmacokinetic paran CHF Atimos [®] pMDI 24 p-value ^a	5259 pMDI 100 μg + 4 μg versus Atimos [®] pMDI 24 μg (T versus R2) Ratio PE (90% CI) ^b
Pharmacokinetic Results, con Statistical analysis of formoter Pharmacokinetic parameter C _{max} t _{max}	ol plasma pharmacokinetic param CHF Atimos [®] pMDI 24 p-value ^a 0.1809	5259 pMDI 100 μg + 4 μg versus Atimos [®] pMDI 24 μg (T versus R2) Ratio PE (90% CI) ^b 90.71 (80.39;102.34)
Pharmacokinetic Results, con Statistical analysis of formoter Pharmacokinetic parameter C _{max} t _{max} AUC _{0-30min}	ol plasma pharmacokinetic param CHF Atimos [®] pMDI 24 p-value ^a 0.1809 0.0096	5259 pMDI 100 μg + 4 μg versus Atimos® pMDI 24 μg (T versus R2) Ratio PE (90% CI) ^b 90.71 (80.39;102.34) 0.04 (0.04;0.08)
Pharmacokinetic Results, con Statistical analysis of formoter Pharmacokinetic parameter C _{max} t _{max}	ol plasma pharmacokinetic param CHF Atimos [®] pMDI 24 p-value ^a 0.1809 0.0096 0.9158	5259 pMDI 100 μg + 4 μg versus Atimos® pMDI 24 μg (T versus R2) Ratio PE (90% CI) ^b 90.71 (80.39;102.34) 0.04 (0.04;0.08) 99.05 (85.15;115.22)
Pharmacokinetic Results, con Statistical analysis of formoter Pharmacokinetic parameter C _{max} t _{max} AUC _{0-30min} AUC _{0-24h}	ol plasma pharmacokinetic param CHF Atimos® pMDI 24 p-valueª 0.1809 0.0096 0.9158 0.9907	5259 pMDI 100 μg + 4 μg versus Atimos® pMDI 24 μg (T versus R2) Ratio PE (90% CI) ^b 90.71 (80.39;102.34) 0.04 (0.04;0.08) 99.05 (85.15;115.22) 99.92 (89.04;112.13)

^a Probability of no difference between treatments (ANOVA, non-parametric test for t_{max})

^b Point estimate and 90% CI of the least-squares geometric percentage ratio (ANOVA). For t_{max}, comparison was assessed between T and R2 using a Wilcoxon signed rank test; the Hodges-Lehmann nonparametric estimate of location shift between T and R2 based on untransformed data was provided with its 90% two-sided CI.

Safety Results:

Adverse events

No deaths or other SAEs occurred during this study. One subject was prematurely discontinued from the study due to an AE ([preferred term: []]) following Treatment R2. The AE was considered related to the study medication by the Investigator, based on the fact that the subject (female) did not develop such abnormality after inhalation of placebo. Further examinations to exclude a pre-existing heart abnormality were conducted on the subject; they included CT coronarography, echocardiography, effort test, and adenosine test. The CT coronarography and echocardiography showed normal results, while the subject also experienced []] for the subject stimulation. In addition, the subject presented a "variant of normality" at baseline, showing variations that are present in 10-20% of young female population and that are often connected with high sensibility to sympathetic stimulation [1].

Thirteen (31.0%) subjects had at least one treatment-emergent AE (TEAE) in the treatment period following Treatment T. This incidence was similar to the incidences following reference treatments R1 and R2 (13 [30.2%] and 8 [18.6%], respectively) and following placebo administration (13 [30.2%] subjects).

Name of Company: Chiesi Farmaceutici S.p.A. Name of Finished Product:	Individual Study Table Referring to Part of the Dossier	(for National Authority Use only)
CHF 5259 pMDI, Atimos [®] pMDI	Volume:	
Name of Active Ingredient:		
glycopyrrolate, formoterol	Page:	

By preferred term, all TEAEs were reported in less than 5% of the subjects following any treatment, except for headache which was observed in 8 (19.0%), 5 (11.6%), 4 (9.3%), and 7 (16.3%) subjects following Treatments T, R1, R2, and P, respectively.

All TEAEs were at most moderate in intensity.

Clinical laboratory evaluation

Treatment-emergent laboratory abnormalities were observed in less than 5% of the subjects, with the exception of total bilirubin below normal range (8 [18.2%] subjects), monocytes (%) above normal range (4 [9.1%] subjects), and phosphorus below normal range (3 [6.8%] subjects). None of the laboratory-related abnormalities were reported as AE.

Potassium results

The profile of potassium serum concentration was studied up to 24 h after administration of placebo (P) and 2 active treatments (Treatments T and R2).

The parameters derived from potassium serum concentrations and the statistical analysis are shown in the table below:

Potassium parameters	CHF 5259 pMDI 100 μg +Atimos [®] pMDI 24 μg (T) N = 42	Atimos [®] pMDI 24 μg (R2) N = 43	Placebo (P) N = 43
C _{min} (mmol/L)	3.70 ± 0.232	3.71 ± 0.257	3.89 ± 0.185
t _{min} (h)	4.00 (0.00-12.00)	4.00 (0.25-12.00)	4.00 (0.00-8.00)
AUC _{0-24h} (mmol.h/L)	101 ± 4.40	102 ± 4.91^{a}	103 ± 4.69

N = number of subjects

Values are arithmetic means \pm SD, except median (range) for t_{min} a N=42

CHF 5259 pMDI + Atimos[®] pMDI vs. placebo (T vs. P)

Potassium C_{min} and AUC_{0-24h} were slightly, though significantly lower following administration of CHF 5259 pMDI + Atimos[®] pMDI (T) than after placebo administration (P). The point estimates were 95% (95% CI 93;97) and 98% (95% CI 97;100), respectively, and p-values were less than 0.0001 and equal to 0.0121 for C_{min} and AUC_{0-24h} , respectively. The administration of CHF 5259 pMDI + Atimos[®] pMDI (T) had no impact on the rate of serum potassium decrease, as indicated by the point estimate of 0.00 (95% CI -1.00;0.13) and p-value of 0.9041 for the shift in t_{min} between T and P.

Name of Company: Chiesi Farmaceutici S.p.A. Name of Finished Product:	Individual Study Table Referring to Part of the Dossier	(for National Authority Use only)
CHF 5259 pMDI, Atimos [®] pMDI	Volume:	
Name of Active Ingredient:		
glycopyrrolate, formoterol	Page:	

Atimos[®] pMDI vs. placebo (R2 vs. P)

Potassium C_{min} and AUC_{0-24h} were slightly, though significantly lower following administration of Atimos[®] pMDI (T) than after the administration of placebo (P). The point estimates were 95% (95% CI 93;97) and 98% (95% CI 97;100) and p-values were less than 0.0001 and equal to 0.0158 for C_{min} and AUC_{0-24h} , respectively. The administration of Atimos[®] pMDI (R2) had no impact on the rate of serum potassium decrease, as indicated by the point estimate of 0.00 (95% CI - 1.00;0.75) and the p-value of 0.9322 for the shift in t_{min} between R2 and P.

CHF 5259 pMDI + Atimos[®] pMDI vs. Atimos[®] pMDI (T vs. R2)

Potassium C_{min} and $AUC_{0.24h}$ were similar following administration of CHF 5259 pMDI + Atimos[®] pMDI (T) or Atimos[®] pMDI alone (R2), with point estimates of 100% (95% CI 98;102) and 100% (95% CI 98;101) and p-values of 0.7658 and 0.8418 for C_{min} and $AUC_{0.24h}$, respectively. The concomitant administration of CHF 5259 pMDI (T) and Atimos[®] pMDI had no impact on the rate of serum potassium decrease compared to what was observed following the administration of Atimos[®] pMDI alone (R2), as indicated by the point estimate of 0.00 (95% CI -0.75;0.38) and p-value of 0.8889 for the shift in t_{min} between T and P.

Potassium parameters	CHF 5259 pMDI 100 µg + Atimos [®] pMDI 24 µg versus Placebo (T versus P)		Atimos [®] pMDI 24 µg versus Placebo (R2 versus P)		CHF 5259 pMDI 100 μg + Atimos [®] pMDI 24 μg versus Atimos [®] pMDI 24 μg (T versus R2)	
	p-value ^a	Ratio PE (95% CI) ^b	p-value ^a	Ratio PE (95% CI) ^b	p-value ^a	Ratio PE (95% CI) ^b
C _{min}	< 0.0001	94.78 (92.96;96.64)	< 0.0001	95.11 (93.44;96.80)	0.7658	99.73 (97.91;101.58)
t _{min}	0.9041	0.00 (-1.00;0.13)	0.9322	0.00 (-1.00;0.75)	0.8889	0.00 (-0.75;0.38)
AUC _{0-24h}	0.0121	98.05 (96.57;99.54)	0.0158	98.25 (96.87;99.65)	0.8418	99.85 (98.40;101.33)

Statistical analysis of potassium serum parameters:

PE = point estimate

^a Probability of no difference between treatments (ANOVA, non-parametric test for t_{min})

^b Point estimate and 95% CI of the least-squares geometric percentage ratio (ANOVA). For t_{min}, comparison was assessed between T and P, R2 and P, and T and R2 using a Wilcoxon signed rank test; the Hodges-Lehmann nonparametric estimate of location based on untransformed data was provided with its 95% two-sided CI.

Name of Company: Chiesi Farmaceutici S.p.A. Name of Finished Product:	Individual Study Table Referring to Part of the Dossier	(for National Authority Use only)
CHF 5259 pMDI, Atimos [®] pMDI	Volume:	
Name of Active Ingredient: glycopyrrolate, formoterol	Page:	

Glucose results

The profile of glucose plasma concentration was studied up to 24 h after administration of placebo (P) and 2 active treatments (Treatments T and R2).

The parameters derived from glucose plasma concentrations and the statistical analysis are shown in the table below:

Glucose parameters	CHF 5259 pMDI 100 μg +Atimos [®] pMDI 24 μg (T) N = 42	Atimos [®] pMDI 24 μg (R2) N = 43	Placebo (P) N = 43
C _{max} (mmol/L)	7.13 ± 1.40	7.06 ± 1.53	5.96 ±0.825
t _{max} (h)	4.00 (0.50-12.00)	4.00 (4.00-12.00)	6.00 (0.50-24.00)
AUC _{0-24h} (mmol.h/L)	126 ± 11.4	126 ± 11.8^{a}	120 ± 9.25

N = number of subjects

Values are arithmetic means \pm SD, except median (range) for t_{max}

^a N = 42

CHF 5259 pMDI + Atimos[®] pMDI vs. Placebo (T vs. P)

Glucose C_{max} and AUC_{0-24h} were slightly, though significantly higher following administration of CHF 5259 pMDI + Atimos[®] pMDI (T) than after placebo administration (P). The point estimates were 118% (95% CI 113;124) and 105% (95% CI 104;107) for C_{max} and AUC_{0-24h}, respectively, and both p-values were lower than 0.0001. The administration of CHF 5259 pMDI + Atimos pMDI (T) slightly, though significantly anticipated the plasma glucose peak, as indicated by the point estimate of -1.75 (95% CI -4.00;0.00) and p-value of 0.0017 for the shift in t_{max} between T and P.

Atimos[®] pMDI vs. Placebo (R2 vs. P)

Glucose C_{max} and AUC_{0-24h} were slightly, though significantly higher following administration of Atimos[®] pMDI (T) than after the administration of placebo (P). The point estimates were 117% (95% CI 111;123) and 105% (95% CI 103;107) for C_{max} and AUC_{0-24h}, respectively, and p-values were both less than 0.0001. The administration of Atimos[®] pMDI (R2) slightly, though significantly anticipated the plasma glucose peak, as indicated by the point estimate of -1.00 (95% CI -3.00;0.00) and p-value of 0.0417 for the shift in t_{max} between R2 and P.

 $CHF 5259 \ pMDI + Atimos^{\text{@}} \ pMDI \ vs. \ Atimos^{\text{@}} \ pMDI \ (T \ vs. \ R2)$ Glucose C_{max} and AUC_{0-24h} were similar following administration of CHF 5259 $pMDI + Atimos^{\text{@}} \ pMDI \ (T)$ or $Atimos^{\text{@}} \ pMDI \ alone \ (R2)$, with point estimates of 101% (95% CI 97;106) and 100% (95% CI 98;102) and p-values of 0.5364 and 0.9318 for Cmax and AUC0-24h, respectively. The concomitant administration of CHF 5259 pMDI (T) slightly anticipated the plasma glucose peak compared to what was observed following the administration of Atimos[®] pMDI alone (R2), as indicated by the point estimate of 0.00 (95% CI -1.00;0.00) and p-value of 0.0486 for the shift in t_{max} between T and P.

Safety Results, Cont'd:

Chiesi Farmaceutici S.p.A. Refer of the		lual Study ing to Part Dossier		(for National only)	l Authority Use	
Name of Finished Product: CHF 5259 pMDI, Atimos [®] pMDI		Volum	e:			
Name of Active Ingredient: glycopyrrolate, formoterol		Dagas				
Statistical an	Statistical analysis of glucose plasma parameters:					
CHF 5259 pMDI 100 µg - Atimos [®] pMDI 24 µg versu Glucose		pMDI 100 μg + MDI 24 μg versus Placebo	Atimos [®] pMDI 24 µg versus Placebo		Atimos [®] pMDI 24 µg versus Atimos [®] pMDI 24 µg	
parameters			(R2 versus P)		(T versus R2)	
	p-value ^a	Ratio PE (95% CI) ^b	p-value ^a	Ratio PE (95% CI) ^b	p-value ^a	Ratio PE (95% CI) ^b
C	<0.0001	118.29	<0.0001	117.21	0.5264	101.35

 $\frac{\text{AUC}_{0-24h}}{\text{PE} = \text{point estimate}} < 0.$

< 0.0001

0.0017

< 0.0001

C_{max}

t_{max}

^a Probability of no difference between treatments (ANOVA, non-parametric test for t_{min})

(113.04;123.77)

-1.75

(-4.00; 0.00)

105.18

(103.71;106.67)

^b Point estimate and 95% CI of the least-squares geometric percentage ratio (ANOVA). For t_{min}, comparison was assessed between T and P, R2 and P, and T and R2 using a Wilcoxon signed rank test; the Hodges-Lehmann nonparametric estimate of location based on untransformed data was provided with its 95% two-sided CI.

< 0.0001

0.0417

< 0.0001

0.5364

0.0486

0.9318

 $\frac{(97.04;105.84)}{0.00}$

(-1.00;0.00)

100.07

(98.41;101.76)

(111.43; 123.29)

-1.00

(-3.00; 0.00)

105.32

(103.29;107.40)

ECG and vital signs

Apart from one subject whose ECG showed reported as AE (leading to withdrawal from the study), no ECG-related or vital sign-related AEs were reported.

Following all treatments, HR increased from pre-dose to a maximum at 4 hours after inhalation, coincidently with the planned lunch. Considering mean placebo-adjusted HR values however, comparable increases from pre-dose were seen following inhalation of treatments that included formoterol (Treatments T and R2; 6.0 and 6.5 bpm, respectively at 25 min following inhalation), whereas no increase was observed during Treatment R1 (maximum mean pre-dose placebo-adjusted HR change: 2.1 bpm). Similarly, mean QTcF values following Treatments T and R2 went up from 402.4 and 402.0 ms, respectively, at pre-dose to maxima of 416.3 and 416.0 ms, respectively, at 15 min post-dose, and remained at similar values until 4h post-dose, whereas QTcF values following Treatment R1 did not change in time. The effect of formoterol plasma concentration on HR and QTc increases could not be ruled out judging from time correlation plots between glycopyrrolate or formoterol peak plasma concentrations and increases in QTc and HR. No enhancement of this effect by the addition of glycopyrrolate could however be seen. The observed variations following inhalation of glycopyrrolate were more likely related to the circadian rhythm and meal intake.

Name of Company: Chiesi Farmaceutici S.p.A. Name of Finished Product:	Individual Study Table Referring to Part of the Dossier	(for National Authority Use only)
CHF 5259 pMDI, Atimos [®] pMDI	Volume:	
Name of Active Ingredient:		
glycopyrrolate, formoterol	Page:	

None of the subjects had a treatment-emergent QTc value >480 ms or QTc changes from pre-dose >60 ms. Treatment-emergent QTcF values >450 ms at any post-dose time point were seen in one (2.3%) subject, following Treatment R2. None of the abnormalities in ECG were considered to be clinically significant.

Lung function tests

No relevant differences in FEV_1 were observed between active treatments. No lung function-related AEs were reported.

Conclusion:

No impact of formoterol on glycopyrrolate overall systemic exposure was found since the 90% CI of the ratio of geometric means of glycopyrrolate AUCs between the test treatment (CHF 5259 pMDI + Atimos[®] pMDI) and the reference treatment (CHF 5259 pMDI) were within the acceptance interval 80-125%. Absence of impact of formoterol on glycopyrrolate absorption cannot be concluded since the 90% CI for glycopyrrolate C_{max} were outside the acceptance interval (105%-134%). However, the increased peak level of glycopyrrolate after administration of the free combination of CHF 5259 pMDI + Atimos[®] pMDI compared to CHF 5259 pMDI alone, was devoid of any effect in terms of tolerability since no differences in serum potassium profile, plasma glucose profile, or ECG values were observed between the two treatments.

No impact of glycopyrrolate on the pharmacokinetics of formoterol was found since the 90% CI of the ratio of geometric means of formoterol C_{max} and AUCs between the test treatment and Atimos[®] pMDI were within the acceptance interval 80-125%. Consistently, overall no impact of glycopyrrolate was found on the evolution of serum potassium and plasma glucose levels following formoterol administration.

The administered treatments were safe and well tolerated. No differences in safety and tolerability profile were observed for the free combination of CHF 5259 pMDI + Atimos[®] pMDI in comparison to that of the single components.

Date of report: 23 May 2012

References

1. Chuan Chou T. and Knilans T. K. Electrocardiography in Clinical Practice Fourth Edition, W.B. Saunders Company